SHOGUN 1K 7ZX81
problems to expect

size, original prog needs 3x64 bytes checkmemory, screen also v
zx81 must fit 80 bytes screen and 2x64 bytes memoryscreen v
stack needs room for recursion, 70 bytes minimal v

display,

shogun as

in 1 character difference normal and shogunstone and value
solved by 1,2,3,4 and inversion,

I and Z for 1 and 2

12 bytes from #4000 to #400B free reuseble for own "variables"

org #4009

fields equ #4400-64
bckfld equ fields-64

’

’

d file

’

in LOWRES more sysvar are used, but in this way the shortest code

over sysvar to start machinecode.

equ basic+3

DO NOT CHANGE AFTER BASIC+3

basic 1d h,dfile/256
Jjr initl
db 236
keysys db 212,28
db 126,143,0,18
eline dw last
clhl dw last-1
do 0,0,0,0,0,0
berg db 0
mem db 0,0
initl 1d 1, dfile mod 256
Jr init2
lastk db 255,255,255
margin db 55
nxtlin dw basic
flagx equ init2+2
init2 1d (basic+3),hl
with 64, the correct value
1d h,vars/256
db 0,0
loading
1d 1,vars mod 256
frames db #37
db #e9

jp gameini

dw O

cdflag db 64

’

DO NOT CHANGE SYSVAR ABOVE!

r

’

(=DFILE)

; highbyte of dfil

; BASIC over DFILE

; X OVERWRITTEN ON

; low byte of dfil

BASIC-1line over sysvar

; repair correct D

; x used by ZX81,

; 1 more than actu
; this must have b

YOUR ACTUAL GAMECODE,

This saves 11 bytes of BASIC

e

data

LOAD

e

FILE flagx will be set

not effective code after

al command
it 7 set

can be everywhere

pieces DEFB %00011011

DEFB %11100100
DEFB %11001001
DEFB %01010000 ; shogun
DEFB %10110100
DEFB %10110001
DEFB %00100111

rseed DEFB O

’

DEFB %10000111
DEFB %$10001101
DEFB %01001011
DEFB %00010100 ; shogun

DEFB %10011100
DEFB %01001110
DEFB %11100001

field
adcvvvii

a = attacked
d = defended

c = colour opponents
vvv = indexvalue of piece 1..7 = 7 pieces, 1 doubled
ii = indicator of value from piece 0..3 = 4 values

Shogun is always 00010000
Field in use when AND 00011100 returns a value

free codeable memory

erase calc fields

ertop LD HL, fields
erfld 1d a, (hl)

and 63 ; take of attacked and defended
LD (HL) , a
INC L ; end of field is at end of 256 bytes
JR NZ,erfld
; RET exit through dwn saves a byte, B not
needed
dwn CP b ; opcode 88 used as used value when move is
out of board
RET Z
INC B
RET
rgt CP c ; opcode 89 used as used value when move is out of
board
RET Z
INC C
RET

’

showwin call showb-3
start in a, (254) ;
and 4 ; 3dx 8 1 km to start the game

false move is always Z-flag set

jr nz,start

clfld

1d hl, fields

1d
inc

(hl),255 ;
1

jr nz,clfld

LD

B, 64

; 64 fields with 0-3
; rnd number here

nfld
frnd

newl
fempty

; pieces on

sstone
srow
nxte

hla

call nxtlin ;
sub b
jr nc, frnd ;
adc a,b
LD HL, fields-1
INC HL
1D E, (HL)
INC E
JR NZ, fempty
DEC A
JR NZ, fempty
1D A,B
AND 3
LD (HL) , A
DJNZ nfld ;
the board
1d d,32

1D E,B
1D B, 7
LD c,8 ;
CALL #4000

inc e

1d a,e

and 7
jr z,nxte ;
ADD A,A
ADD A,A
OR (HL)
or d ;

1D (HL) , A

1D A,C
OR A
JR NZ, srow
1d d,c
1d e, 6
OR B
LD B,C ;
JR NZ, sstone

all fields cleared

get a random nr

from 64 down to 1
; a=1to B

; find empty field

; until random steps are done

; value pointer only
; set pointer on field in memory
do all 64 fields, 16x0 16x1 16x2 16x3

; colour player
; start pointer player
; bottom row
8 pieces
; calculate field

keep E in range 1-7

; move to stoneposition
; add fieldpointer

add player or computer

; stone info in field
; test end of row reached

; d now O
; start pointer computer
; A=0 B=?
Make B=0 for top row
; second turn is exit

; BC always on top of board on move of player

; show board

loop

swl
scrfld

cal
1d
Jr

cal

1 showb ;
a,256+22-29
nc, showwin

show board and count nr of stones
; "-" signal player lost
; player lost

1d 1, shogscr mod 256 ; H is already right wvalue

1 #4004 :

add a,b

use fieldroutine to calculate screenposition
; screen has 1 position per line more

(Newline)

’

wi
wi

fi

up
dwn

r

fkey

no

dir

nokey

’

£2

1d 1,a
1d a, (hl)

xor 128
1d (hl),a

A never 255

exx
inc a

1d bc, (lastk)
1d a,c

jr nz,wdup
inc a

jr z,wddwn
call nz, #7bd
exx

dec a
Jp z, fire

1d d,4

1d hl, keysys
cp (hl)

inc hl

call z,clhl
inc hl

dec d

jr nz, fkey

jr loop

; visible screen = 9 positions
; get field

; invert display
; show field

; keep BC
; test key down
; get keypress
; inport to test
; result from above, wait for no key down
; now key is up, test key down
; wait for key down
; translate pressed key
; get BX

; test Z-key
; test SELECT-key out of table

; test 4 directions

; start of table

; test direction

; point to index of routine
; 1f pressed goto direction

; point to next direction
; test all directions
; test 4 directions

; the playloop

Player destination reached and selected jumps to F2

BIT 5, (HL)

JR NZ,nokey

XOR A
LD (fsel+l),
bit 7, (hl)

1d a,256+15-29

frompos

’

’

jr z,noshat
show error

ex de,hl

1d hi1, 0

call domove

call showb

1d a,256+21-29

jr nc,swl
should win

player move now ready,

push bc
call ertop
call chckbrd-3

1d

(bestsc+l) ,a

; on own stone
; if so no move

A ; always undo selected

; not in reach?
; preload "?"
; not a valid move but stone is deselected,

; DE now destination
; get from position

; move the stone
; show the new board, count stones
; "+" signal player won
; only computer loses stones, so player

so computer move starts here
; save XY cursor
; erase pointers attacked/defended

; check pointers for all stones

; reset best score index, reset best move

save current pointers for all possible moves

1d hl, fields

1d de,bckfld

call bco4d H
computer

call chckbrd-3
stonepositions

; all checked, do the best move

bestto 1d de, 0

bestfrom 1d hl,0 ;
call domove ;
call chckbrd-3

shogunp layer only
1d a, 254 H

shogpl 1d hl, fields
during testing
bit 6, (hl) ;
pop bc
jr z,noshat ;
res 7,a
noshat 1d (empval+l),a
jr nokey ;

1d a,csxy mod 256 ;

chckbrd 1d (doubuse+l),a
LD B, 8
cline LD c,8
Crow dec b ;
CALL #4000
1d a, (hl) ;
and %00111100
jr z,nfb ;
bit 5,a
1d a, 064
jr z,cstone ;
add a,a
cstone 1d (bitset+l),a
computer
doubuse call compin
computer find best
nfb inc b
1d a,c
or a

jr nz,crow ;
djnz cline ;
ret ;
domove push de
1d a, (hl) ;
1d d,a
and 3 ;
1d (hl),a ;
1d a,d
and %00111100
1d d,a
pop hl
1d a, (hl) H
and 3 ;
or d ;

; backup position of the board
copy 64 bytes and make checkbrd react for

; now find best move with current

; set by routine above
set by routine above
make the computermove
; check pointers for all, but we need
27-29
; position of shogun player, set
player shogun attacked by computer?
; retrieve cursor
if not, NO SHogun ATtack

; signal attack in the display of the board

; set attack or not
continue for player

entry computer move
; set which boardroutine to do
; 8 rows to check
; 8 columns to check
for field, B and C 1 less, here B-1
; Here C-1 and get boardfield

get value of the field
; test used
if not no test needed
; test player or computer stone
; preset bit for computer
if so, done
; make it bit player

; set bit on endposition for player or
; set all fields attacked or protected,

; undo DEC B from above
; test end of row

do next position on row
do next line
board now checked

; save destination
get fieldvalue from
; save in D
only keep stonepointer
erase stone
; retrieve original value
; stone value only
; save again in D
; get destination
get fieldvalue to
only keep stonepointer
add stone value

l1d (hl),a ; move stone
1d a,201 ; after a move depthsearch computer is turned off

1d (depth),a

ret ; move done
fire CALL #4001 ; FIELD-routine over sysvar
fsel LD A,Q ; get fire status
OR A ; test value
JP NZ, f2 ; fire pressed on possible end field
BIT 5, (HL) ; my stone selected?
jr z,loopjp ; false selected, empty or opponent
1d (frompos+1l),hl ; save from position
LD A,128 ; preset for bitset but also not zero
LD (fsel+l),A ; signal stone selected, not zero written
LD (bitset+1) ,A ; preset check on player fields in reach
exx ; keep HL without use of stack
call ertop ; erase previous pointers set
exx ; get field
call csxy ; set all destinations in reach
loopjp Jjp loop ; continue the player loop
ndir 1d a,?24 ; 4 directions ; 4 3 2 1
dird 1d d,a ; save remaining directions
push de ; save remaining directions and info
push bc ; save position
1d a,e ; get direction info and step counter
and %00111000 ; current active direction only
cp d ; test current direction
jr z,nodel ; same direction, move allowed
xor 8 ; make it opposite direction
cp d
jr z,nomove ; backwards is not allowed
bit 7,e ; we have a different direction, change of
direction allowed?
jr z,nomove ; i1f not, skip this direction
1d a,e ; get check register
sub 64 ; take off changecounter
and %11000111 ; take out old dir
or d ; put in new dir
1d e, a ; save all
nodel LD A,D ; 24 16 8 O
rra ;12 8 3 0
rra ; 6 4 2 0
dec e ; we do a move
LD HL, keysys+1 ; preset movetable
ADD A,L
D L,A
call clhl ; do move up, down, left or right
jr z,nomove ; out of board
call #4001 ; get field when on screen
1d a,e
and 7
jr z,movend ; we move to an end field, always allowed even
with stone
1d a, (hl) ; fieldvalue or u/d/1l/r first byte

and %00011100 ; field in use or out of board?

movend CALL Z,moves ; only do valid moves, check
recursively

nomove POP BC ; undo move
POP DE ; undo step or change in dir
1d a,d
sub 8
JR NC,dird ; test each field 4 directions done
RET ; end of this field test
csxy 1d (fromfld+1l),hl ; save where your stone started
compin 1d a, (hl) ; get fieldvalue
and %00011100 ; stone only
cp %00010000 ; test for shougun
jr nz,noshog ; 1f not, no save needed
1d de, shogpc+l ; preset for computer, needed to test
attacked
bit 5, (hl) ; test player vs comnputer
jr z,savshog
1d de, shogpl+l ; player shogun, needed to signal attacked
savshog 1d a,1 ; get position
1d (de),a ; save on right place
noshog call stval ; get stone value
add a,%11111001 ; add changecounter, impossible direction
and 1 step extra
LD E,A ; change (192), current dir (56), nr
of moves (1-4)
; ccdddvvv

; cc change allowed, bit 7 on, bit 6 extra step allowed
; ddd current direction
; VVV nr moves

moves LD AE
and 7
JR NZ,ndir ; still moves left, repeat recursively

; endposition reached

1d a, (hl) ; get field
bitset OR 0 ; add reachable for player or computer
LD (HL) , A ; save field
depth RET ; player now ready, but computer can go on.

changed in code

; computer reached a destination, now we check the score of the move

; 255 = hit shogun (before move) v
;67 = shogun not attacked (after move) V.
;32 = shogun attacked (before move) v
; 16 = hit other piece (before move) v
; 8 = attacked before move (before move) v
; 4 = current stone not attacked (after move) v
; 2 = protected after move by own stone (after move) v
X0or a ; reset score of current move
1d (seta+l),a
1d a, (hl)
and %00011100 ; test used
jr z,empok ; an empty field is ok to go to
bit 5, (hl)

ret z ; however you can't go on own stone

; test from position

empok exx ; save HL as destination
fromfld 1d hl,0

bit 5, (hl) ; due to double use we could have started a human
stone

ret nz ; which we DON'T test

1d (fromcp+l),hl ; Now we know where computer started

; 32 = shogun attacked

; 8 = normal stone
1d de, #2008 ; preset shogun or normal
bit 7, (hl) ; test bit 7, field attacked before move
call nz,setnas ; 1if so, set attackscore
exx ; back to destination

; now we test destination before move

; 255 = hit shogun

; 16 = hit other piece
1d de, #££10 ; hit shogun or other stone
call setnas ; test a piece here

; do move

1d (topos+l),hl ; not best move, that is after test
ex de,hl ; DE-stination

1d hl, (fromcp+l) ; get from again

call domove ; do the move

; depth=RET

call ertop ; erase current steps
1d a,compin mod 256 ; do the second check for computer
call chckbrd ; set new steps after move (double

recursive, large stack)

;67 = shogun not attacked

shogpc 1d hl, fields ; get position of shogun
bit 7, (hl) ; test attacked after move
1d a,h ; preset score
call z,seta ; not attacked, add score

; 4 = dest field is not attacked
topos 1d hl,0

bit 7, (hl) ; test attacked after move
1d a,4
call z,seta ; 1f not, set score not atttacked

; extra AI not in original

; 2 = protected after move by own stone
bit 6, (hl) ; test destination is protected by other stone
1d a,?2
call nz,seta ; if so add 2 points of score

; score analys

1d a, (seta+l) ; get score current move
bestsc cp O ; test against current best

jr c,worse ; not better means exit

1d (bestsc+l),a ; set new best score

1d (bestto+l),hl ; save current TO as best
fromcp 1d h1,0 ; get from position current move

1d (bestfrom+1),hl ; save current FROM as best

; undo move

worse 1ld de, fields
1d hl,bckfld ; get copy to undo changes

bc64 1d bc, 64
ldir

; check next moves, set pointers back needed
; depth= test AI move, also save start

XOor a ; computer goes on where player stops
1ld (depth),a
1d a,csxy mod 256 ; set test without overwriting data
1d (doubuse+l),a
ret
setnas 1d a, (hl) ; get current stone
and %00011100 ; stone value and colour only
ret z ; no stone exit
cp %00010000 ; 1s it player shogun
1d a,e
jr nz,seta ; other stone is attacked
1d a,d ; shogun attacked
seta or O ; mix with current score
1d (seta+l),a ; save new score
ret

1d (empval+l),a

showb push bc ; save pointer
1d hl, fields ; the memoryboard
1d de, shogscr ; the screenboard
1d b,d ; set counter player stones
1d c,d ; set counter computer stones
setline 1d a, (hl) ; get field
and %00011100 ; test used
jr z,notused ; no stone is not counting
cp %10000 ; is it shogun?
jr z,shst ; 1f so add 16
1d a,1 ; otherwise add 1
shst bit 5, (hl) ; player or computer
jr z,addc ; set computer value
add a,b ; add player
1d b,a ; save player
db #ca ; JP Z, never true, saves a byte from JR
NOTUSED
addc add a,c ; add computer
1d c,a ; save computer
notused call stval ; get value of the stone
stret jr nz,stfnd ; NZ = not shogun
or a ; test O
1d a,"I"-56 ; if so show I
jr z,stfnd ; shogun value 1=I
1d a,"z2"-56 ; otherwise shogun value 2=7
stfnd add a, 29 ; make is ZX81 ascii number
bit 5, (hl) ; inverted display playerl or player2
jr z,fldval
set 7,a ; invert display
fldval 1d (de),a ; show field, empty or stone
inc 1 ; next memory field, not HL, H=#43 elsewhere
needed
inc de ; next screen field
1d a,1

and 7

jr nz,setline

or 1
inc de
jr nz,setline

1d a, 254
1d (empval+l),a

1d a,17+#43
cp b
jr nc,deadl
cp c

deadl pop bc
ret

stval 1d a, (hl)
exx
1d b,a
and %00011100
jr z,empval
xor %00010001
it 1
1d c,a
1d a,b
rra
rra
and 15
1d hl,pieces-1
add a,l1
1d 1,a

1d a,b
and 3
inc a

1d b,a

1d a, (hl)
ffld rrca

rrca

dinz ffld

and 3
dec c¢
db 1
empval or 254
exx
ret

still

on current line

test end of board

’

’

27-29

’

step over Newline
do next line

possible signal reset

minimal score to play

too few stones, 2 or shogun lost
same test other player

’

retrieve cursor position

display ready

get field
save HL

’

’

double copy of value
test used

not used

’

’

’

add 1, swap shogun, only shogun will make

save result
get screen

divide by 4

’

stone position only
index to stones
add stonenumber
HL now stoneposition

get screen

position within stone only
position in stone >0

get stonetable

rotate to right value
rotate to position

value

of position

test shogun
hide empty value

’

27-29

block #4380-74+gameini-dfile-$,0 ; room for stack

; 29 bytes once used in SP-area or size program is too large

gameini ex af,af'
1d hl, rndl
1d de,nxtlin
1d bc,18
1dir

1d hl, field
1d ¢,12

1d e, b

ldir

1d hl, keytab

’

r

’

random routine

’

to be set over sysvar

copr random routine

field routine over sysvar

’

’

DE=#4000

key table and 2 directions

1d ¢, 23
1d e, keysys mod 256

jr ini4 ; continue after screen

; the display file, Code the lines needed.

dfile db 118

shogscr do "g"-27,"H"-27,"0"-27,"G"-27,"U"-27,"N"-27,29,"K"-27,118
db 21,"y"-27,"0o"-27,"u"-27,0,"W"-27,"1"-27,"N"-27,118
do 22,"a"-27,"1"-27,0,"W"-27,"1"-27,"N"-27,"S"-27,118
do 27+128,"3s"-27,"H"-27,"0"-27,"Gg"-27,"u"-27,"N"-27,0,118
do "A"-27,"T"-27,"T"-27,"A"-27,"C"-27,"K"-27,"E"-27,"D"-27,118
db "Cc"-27,"O"-27,"N"-27,"T"-27,"R"-27,"0"-27,"L"-27,"S"-27,118
db "Q"-27,"A"-27,"O"-27,"P"-27,0,"2"-27,0,"X"-27,118
db 16,"C"-27,17,0,30,28,30,29,118

; this byte fills the unused part of the screen

db #e9 ; JP (HL) is screenfiller
ini4 1dir ; copy keytable

1d sp,dfile ; set SP where needed
; 42 bytes saved in normal coding memory

Jjp start ; start the game

; routines placed over sysvar

rndl 1d hl, rseed ; seed pointer
1d a, (hl) ; get seed RRCA ; a=a/2
rrca ; a=a/2
rrca
rrca
xor 31 ; swap low bits
add a, (hl) ; add seed
db 17 ; hide frames in DE
dw 65535 ; frames used by zx81
add a,e ; add framecounter
1d (hl),a ; save new seed
ret
field DEC C
1d hl, fields

1D A,B

ADD A,A

ADD A,A

ADD A,A

ADD A,C

add a,l
D L,A
RET

upt equ keysys+up-keytab
1ftt equ keysystleft-keytab

keytab db 5-1
db dwn mod 256
db 10-1
db upt mod 256
db 26-1
db 1ftt mod 256
db 25-1
db rgt mod 256

1ld a,7
(

a
1d 1, (hl)

jp (hl)

up XOor a
cp b
ret z
dec b
inc a
ret
left XOr
cp C
RET
DEC
RET
vars db 128

last equ $

end

a

BC

’

’

’

opcode AA

undo possible z-flag

opcode AA

’

c>0,

never dec c,

no flag

