

Pinkpanther

or
How does the music

come out of the ZX81?

On our last ZX-Team micro fair you could hear it from all corners: the Pink Panther theme from the
film. As far as I know Kelly Abrantes Murta (http://zx81.eu5.org/toddysofte.html) designed this
program for ZX81 with ZON-X box attached, the ZX81 soundcard. He first used the PC program
'midi2ay.exe', to get a format suitable for AY-3-8912 or AY-3-8910. He passes the sound file to ZON-X
using machine code. This is embedded into a BASIC-program and the ingenious idea is that the
execution of the MC is coupled with the display-routine. This enables running of slow mode BASIC
programs with playing sound in background.

Such a program I was looking after for a long time. On the one hand I wanted to convert midi files to
ZON-X files to be played on my soundcard, on the other hand I wanted to run a BASIC-program.

Luckily the assembler sources were available, so I could type in the Program in ASDIS. Thats what it
looks like:

4082 HALT 76 ;REM-Zeilenausgabe unterdrücken

4083 HALT 76 ;REM-Zeilenausgabe unterdrücken

4084 LD IX,SOUND DD218940 ;Display-Routine verbiegen,

4088 RET C9 ;sodass Tonausgabe angesprungen wird.

4089SOUNDLD A,R ED5F

408B LD BC,$1901 010119

408E LD A,$F5 3EF5

4090 CALL $02B5 CDB502

4093 CALL $0292 CD9202

4096 CALL $0220 CD2002

4099 LD HL,(STACK) 2ACB40 ;HL := Adr. an der das Soundfile beginnt

409CLOOP LD A,(HL) 7E ;Prüfe, ob

409D OR A B7 ;im File ein Trennzeichen (=00) steht.

409E JR NZ,NXT1 2013 ;nein, dann ist es eine Tondauer

40A0 INC HL 23 ;ja, dann nächsten Wert prüfen,

40A1 LD A,(HL) 7E ;ob Fileende erreicht

40A2 CP $FF FEFF

40A4 JR Z,EXIT 2822 ;ja, zurück zu BASIC

40A6 CP $FE FEFE ;nein, prüfe, ob $FE vorliegt

40A8 JR Z,NXT2 2815 ;ja, Sprung zu NXT2

40AA OUT REG,A D337 ;nein, Sound ausgeben: Register ausgeben

40AC INC HL 23 ;Nächste Adresse im Soundfile

40AD LD A,(HL) 7E

40AE OUT PRT,A D317 ;Wert ausgeben

40B0 INC HL 23

40B1 JR LOOP 18E9 ;Weiter mit Tonausgabe bis $FF erreicht.

40B3NXT1 LD (STACK),HL 22CB40 ;Tondauer abarbeiten: Soundfileadresse

40B6 DEC A 3D ;speichern und Wert für Tondauer - 1.

40B7 LD (HL),A 77 ;Neuen Wert an die gleiche Stelle

40B8 LD IX,SOUND DD218940 ;speichern und zurück zu BASIC,

40BC JP EXIT C3C840 ;bis nächster Bildaufbau kommt.

40BFNXT2 INC HL 23 ;Aktuelle Soundfile-Adresse + 2

40C0 INC HL 23

40C1 LD (STACK),HL 22CB40 ;Errechnete Adresse speichern und

40C4 LD IX,SOUND DD218940 ;zurück zu BASIC

40C8EXIT JP $02A4 C3A402

40CBSTACK002=$02 ;Speicheradresse für Soundfile-Adresse

40CD;---------------------------

40CDQUIETLD HL,CODES 21DD40 ;Soundchip auf 'Ruhe' stellen

40D0QLOOPLD A,(HL) 7E

40D1 CP $FF FEFF

40D3 RET Z C8

40D4 OUT REG,A D337

40D6 INC HL 23

40D7 LD A,(HL) 7E

40D8 OUT PRT,A D317

40DA INC HL 23

40DB JR QLOOP 18F3

40DD;;

40DDCODES0738080009000A00FF

'REG' is the address for register select of the sound chip
'PRT' is the port to put in the value for the register.

The addresses for the sound chips are:
My soundcard : REG=$37 / PRT = $17
original ZON-X : REG=$CF / PRT = $1F
EightyOne and modified ZON-X : REG = $DF / PRT = $0F

I used the following BASIC-Program to call the machine code:

Lines 5 and 6 determine the start of the sound file. In this Case it is 32926. Line 10 calls the machine
code. Line 20 writes to the screen - here you could print the name of the sound file for example, or you
could run your basic program.
Line 40 won't have any affect in most cases as the sound module will receive new commands
immediately. It only helps calling line 40 after FAST/SLOW. Doing FAST and SLOW stops the music
from being played. As the register may still have values there may be a continuous tone. Line 40 sets
the values to zero - 'silence'.

This program is just the beginning. What I don't like is that the sound file is being modified while
playing. the length of each tone is used as a counter being set to zero when read. If you tried to restart
the music all length of tones were zero and the music would be played within a second. So you have
to reload the ZON-X file each time you want to play it.

How do we get the midi file into our ZX81?
First we need a midi file. You find them in the internet for free. Please take care about copyrights.
Then you need the program 'midi2ay.exe' and a PC. I will show the usage with an example.
'pinkpanther.mid' is our midi file to be converted and 'pink.bin' the sound file to be created.
In a DOS-box you enter
midi2ay -tap pinkpanther.mid pink.bin
This creates the sound file. We now have to check that the created sound file fits into our zeddys
memory and save it to an SD-card.
From this SD-card you load pink.bin into the zeddy using LOAD"PINK.BIN;32768"

This loads pink.bin to adress $8000. Taking a look to the sound file explains why the sound file
beginns at 32926. Again we look at PinkPanther:

The first 158 bytes of pink.bin contain a payer for the ZX Spectrum. That's why we load to adress
32768 and the soundfile starts at 32926.
then there are the register values. Its normally like this:
After two values (1 register, 1 content) we have $00 as delimiter. If there is no delimiter, then then the
next value is the length of the sound, not followed by a delimiter.
Thats what the first 90 bytes of the sound file look like:

$00,$07,$38,$00,$08,$00,$00,$09,$00

$00,$10,$00,$48,$00,$0b,$00,$01,$01

$00,$08,$0c,$00,$02,$90,$00,$03,$01

$00,$09,$0c,$00,$04,$16,$00,$05,$02

$00,$0a,$0c,$09,$00,$fc,$00,$01,$00

$00,$02,$79,$00,$04,$f8,$00,$05,$01

$09,$08,$00,$00,$09,$00,$00,$0a,$00

$09,$00,$ee,$00,$08,$0c,$00,$02,$64

$00,$09,$0c,$00,$04,$db,$00,$0a,$0c

$09,$00,$e0,$00,$02,$50,$00,$04,$c1

For a better understanding I display the registers and their values:

Now we look at the bytes and their meaning:

$00 delimiter or start
$07,$38 register 07 (mixer): A=input, B=input, no noise, sound output on A,B,C
$00 delimiter
$08,$00 register 08: volume A to 0
$00 delimiter
$09,$00 register 09: volume B to 0
$00 delimiter
$10,$00 register 0A (maybe here is an error in midi2ay?): volume C to 0
$48 length
$00,$0b register 00: frequency channel A fine tuning

$00 delimiter
$01,$01 register 01: frequency channel A main tuning
$00 delimiter
$08,$0c register 08: Volume Channel A $0c
$00 delimiter
$02,$90 Register 02: Frequency Channel B Fine tuning
$00 Delimiter
$03,$01 Register 03: Frequency Channel B Main tuning
$00 Delimiter
$09,$0c Register 09: Volume Channel B: $0c
$00 Delimiter
$04,$16 Register 04: Frequency Channel C Fine tuning
$00 Delimiter
$05,$02 Register 05: Frequency Channel C Main tuning
$00 Delimiter
$0a,$0c Register 0A: Volume Channel C: $0c
$09 Length $09
$00,$fc Register 00: Frequency Channel A Fine tuning
$00 Delimiter
$01,$00 Register 01: Frequency Channel A Main tuning
$00 Delimiter
$02,$79 Register 02: Frequency Channel B Fine tuning
$00 Delimiter
$04,$f8 Register 04: Frequency Channel C Fine tuning
$00 Delimiter
$05,$01 Register 05: Frequency Channel C Main tuning
$09 Length $09 (Volume is not changed)
$08,$00 Register 08: Volume Channel A $00 (Sound off)
$00 Delimiter
$09,$00 Register 09: Volume Channel B $00 (Sound off)
$00 Delimiter
$0a,$00 Register 0a: Volume Channel B $00 (Sound off)
$09 Length $09
$00,$ee Register 00: Frequency Channel A Fine tuning
$00 Delimiter
$08,$0c Register 08: Volume Channel A $0c
$00 Delimiter
$02,$64 Register 02: Frequency Channel B Fine tuning
$00 Delimiter
$09,$0c Register 09: Volume Channel B $0c
$00 Delimiter
$04,$db Register 04: Frequency Channel C Fine tuning
$00 Delimiter
$0a,$0c Register 0a: Volume Channel B $0c
$09 Length $09
$00,$e0 Register 00: Frequency Channel A Fine tuning
$00 Delimiter
$02,$50 Register 02: Frequency Channel B Fine tuning
$00 Delimiter
$04,$c1 Register 04: Frequency Channel C Fine tuning

and so on ...

Next I will change the program in a way that the sound file can be included in a giant REM-line, so
complete music titles can be saved in a single program. We could also try to make the speed variable.
There was a speed issue found by Siggi which is resolved already.

Have fun with the program whishes

Joachim

