FULL ZX81 CHESS IN 1K - (c) Copyright David Horne 1983

% ok ok ok bk ok b ok ok ok ok S ok ok S ok ok S ok ok b ok ok b ok ok b Sk ok ok Sk ok ok S ok ok S ok ok S ok ok S ok ok S ok ok b ok ok Sk ok ok b Sk ok ok Sk ok ok Sk ok ok o ok ok ok ok ok

Based on an article from the February 1983 issue of 'Your Computer'’

"The program is copyright. You can produce a copy of the program from the
listings for your own use, but you should not copy the listings or parts
thereof and offer for sale”

% ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok o ok ok ok ok

]
i

FI FI FI FI FI FI FI FI
REHNEFLDEME

1
=
S
o
=
=
=
=

% ok ok ok ok A ok ok ok ok ok ok ok ok ok ok o S ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok o o o ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok o ok ok ok ok

it was modified to get more free space for the improvements - GZS

% ok ok ok ok A ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok o o o ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok o o ok ok ok ok

http://users.ox.ac.uk/~uzdm0006/scans/1kchess/

FULL ZX81 CHESS IN 1K - (c) Copyright David Horne 1983

;#define QPawn ; choose this option for '"Queen's Pawn Game"
#define ZX80upg ; choose this option for the upgraded ZX80

; sKEYBOARD .equ $02bb ;

DECODE .equ $07bd ;

; system variables

; ERR NR .equ 54000 ; 16384
; FLAGS .equ 54001 ; 16385
; ERR _SP .equ 54002 ; 16386
; RAMTOP .equ $4004 ; 16388
; MODE .equ $4006 ; 16390
;;origPos
; PPC .equ $4007 ; 16391
.org $4009 ; 16393 original values
.db $00 ; VERSN (500)
.dw $0004 ; E_PPC (50004)
.dw DFile ; D FILE (54332)
.dw $0000 ; DF CC (S43A5)
.dw Variables ; VARS (S43AF)
.dw $0000 ; DEST (S437F)
.dw eof Vars ; E_LINE ($43B6)
.dw eof Vars+i4 ; CH ADD (543C3)
.dw $0000 ; X PTR (50000)
.dw $0000 ; STKBOT ($43C4)
.dw $0000 ; STKEND ($43C4)
.db $00 ; BREG (548)
.dw $0000 ; MEM (S405D)
;5 .db $00 ; UNUSEDI (S00)
;5 .db $00 ; DF SZ ($02)
;5 .dw 50000 ; S _TOP (S0000)
;e UNUSED1, DF _SZ, S _TOP (4 bytes)
TKP
1d (hl),$OF ; cursor ("?") character
jr old TKP ; the original subroutine
LAST_K .dw $0000 ; LASI_K (SFDBF)
.db $00 ; DEBOUN (SFF)
.db $00 ; MARGIN (S$37)
;o .dw Line2 ; NXTLIN ($407D) - autostart
.dw Line3 ; NXTLIN (5407D) - autostart
.dw $0000 ; OLDPPC (SFFFE)
.db $0000 ; FLAGX (502)
.dw $0000 ; STRLEN (SFA7D)
.dw $0000 ; T ADDR (50C87)
.dw $0000 ; SEED (SE595)
;7 .dw $0000 ; FRAMES (SDDAD)
.dw $8001 ; FRAMES (SDDAD)
;o .dw S0000 ; COORDS (50000)
;o .db S00 ; PR CC (SBC)
;7 .dw $0000 ; S _POSN (SO0AIC)

FULL ZX81 CHESS IN 1K - (c) Copyright David Horne 1983
2 e e COORDS, PR CC, S POSN (5 bytes)
#ifdef ZX80upg

GameOver
1d bc, $0181 ; an unavailable graphic symbol
jr old TKP ;
#else
KYBD
1d bc,$0826 ; possible character codes ("A".."H")
jr KYBDO
fendif
;7 .db $00 ; CDFLAG (500)
.db $40 ; CDFLAG starts in SLOW mode
oldScore ; PRBUFF
.db $00,$00,$00,500,$00
newScore
.db $00,500,$00,%00,500
newList

.db $00,$00,500,3500,500,500
.db $00,$00,500,$00,500,$00,500,5$00,$00,%$00,$00,$00,$00,500,$00,500,$76

; MEMBOT
.db $00,$00,%$00,%00,%00,%00
oldList
.db $00,$00,$00,5%00,%$00,500,%00,%00,500
.db $00,$%$00,$00,%00,%$00,5%00,%$00,%00,%00,%00,%00,%00,5%00,%$00,500
.dw $0000 ; UNUNSED2 (500,500)

; /RAttack .equ S$+3

; LINE 1 REM

Linel

.db $00,$01 ; Line 1

.dw Line2-L1lText ; Line 1 length
LlText

.db S$EA ; REM

FULL ZX81 CHESS IN 1K - (c) Copyright David Horne 1983

; The subroutine TKP just scans the keyboard waiting for an appropriate key to
; be depressed. The alpha-numeric entry is then translated to a board address.

7

;s TKP
old TKP

push hl save input line position (INPUT)
TKPO

push bc save possible character codes

call KEYBOARD

1d b,h
1ld c,1

#ifdef ZX80upg

bit 6, (iy+$3b)

call z,$0229

s ROM: $02bb

the status of the keyboard

is it an upgraded ZX80? (CDFLAG)
-> FAST mode displaying (PAUSE)

fendif
1d bc, (LAST K) the status of the keyboard
;7 1ld d,1
;7 inc d if non of the keys are pressed,
inc ¢ if non of the keys are pressed,
jr z,TKP1 then read again
dec c set back the keyboard status
call DECODE ; ROM: $07bd
1d a, (hl) ; A= the decoded character
pop bc set back the possible character
push bc codes for the test
TKP2
cp C if it corresponds,
jr z,TKP3 ; return
inc ¢ ; next value
djnz TKP2 if it's not among the 8 possible
pop bc value,
jr TKPO then start from the beginning
TKP3
pop bc ; possible character codes
pop hl input position (INPUT)
1d (hl),a display the character
ret

FULL ZX81 CHESS IN 1K - (c) Copyright David Horne 1983

; KYBD is a routine which sets up machine control of the keyboard such that only the eight
; key codes from code 29 and the eight key codes from code 38 are acceptable entries.
; Any other key depression is ignored.

#ifdef ZX80upg

KYBD
H 1d bc, $081d ; possible character codes ("1"..'"8")
1d bc, $0826 ; possible character codes ("A".."H")
fendif
KYBDO
call TKP ; reading the keyboard
;7 dec hl ; next Input position
;7 1d c¢,826 ; possible character codes ("A".."H")
inc hl ; next input position
1d ¢, s$1d ; possible character codes ("1".."8")
call TKP ; reading the keyboard
;7 inc hl ; previous input position's (rows)
1d a, (hl) ; character ("1".."8")
sub $lc ; number from character ("1" -> 1, "8" -> 8)
1d b,a ;Y (rows)
;7 1d c,$0b ; 11
X0r a ;
KYBD1
;; add a,c ; 11*Y
add a, $0b ; 11*Y
djnz KYBD1 ;
add a,CountAl & 255 ; ($61 originally)
dec hl ; next input position (column)
sub (hl) ; A= the screen position's lower byte

FULL ZX81 CHESS IN 1K - (c) Copyright David Horne 1983

; STR: this routine takes the board address and determines whether the contents are:
; different from the current mover colour (0); empty (1), the board surround (2)
; or the same colour as the current mover (3).

7

STR
1d c,a ; C= the screen position's lower byte
1d 1,c ; L= the screen position's lower byte
1d h,BoardHl1l/256 ; HL= the whole screen address
STR2
1d a,1 ; A= the screen position's lower byte
1d b, $02 ; B=2 indicates the margin of the board
cp BoardH1l & 255 ; 1f the address 1is smaller than the board's
jr c,STR4 ; first square, see the next possible move
cp BrdOut & 255 ; 1f the address is bigger than the board's
jr nc, STR4 ; last square, then see the next possible move
1d a, (hl) ; the board position's content
;7 1d b, $01 ; B=1 indicates the empty square
and $7f ; deleting colour bit
;o cp S00 ; (this is unnecessary)
;/ jr z,STRI1 ; empty square?
jr z,STR3 ; empty square?
;7 inc b ; B=2 indicates the margin of the board
cp $76 ; right margin (N/L)?
;7 jr z,STRI ;
jr z,STR4 ;
;/ cp whB ; left margin?
cp $26 ; left margin?
;7 jr ¢,STRI ; (character code smaller than "B")
jr c,STR4 ; (character code smaller than "A")
1d a, (hl) ; colour bit back again
inc b ; B=3 indicates own piece (pawn, bishop...etc.)
;5 1d 1,MoverCol & 255 ; (was S$37)
;5 add a, (hl) ; the current mover's colour (880 or $00)
;5 bit 7,a ; 1f it corresponds, the 7th bit
;7 jr z,STRI ; 1s zero

MoverCol .equ S$+1

add a, $80 ; the current mover's colour ($80 or $00)
rla ; 1f it corresponds, the 7th bit
jr nc, STR4 ; 1s zero
;7 1d b, s00 ; otherwise B=(0 indicates the opponent
X0or a ; set Z-flag
ret ; A=0 indicates the opponent
STR3
dec b ; B=1 indicates the empty square
STR4,;STRI1
1d a,b ; A=B (1..3) position's properties
;7 1ld 1,c ; HL= the whole screen address
and a ; reset Z-flag
ret ;

7

7

theKing
aRook

blkPawn
aBishop

akNight

whtPawn

whK
whQ
whR
whB
whN
whP
blK
blQ
blR
blB
b1N
blP

’

#ifdef QPawn

oP1
QP2
KP1
KP2

#else

QP1
QP2
KP1
KP2

#endif

’

whPieces

FULL ZX81 CHESS IN 1K -

(c) Copyright David Horne 1983

————————————————————————————————— TABLES
.db $01,$0B, $FF, SF5
; 1, 11, -1,-11
.equ $+1
.db S$F6,8F4,$0C,S0A
; -10,-12, 12, 10
.db $0D, $F¥3,$15,%EB,$17,$E9,$F7,5$09
; 13,-13, 21,-21, 23,-23, -9, 9
.equ $+2
.db $0B, $0A, $0C
; 11, 10, 12
————————————————————————————————— PIECES:
.equ $30 ; white King
.equ $36 ; white Queen
.equ $37 ; white Rook
.equ $27 ; white Bishop
.equ $33 ; white kNight
.equ $35 ; white Pawn
.equ whK+$80 ; black King
.equ whQ+$80 ; black Queen
.equ whR+$80 ; black Rook
.equ whB+$80 ; black Bishop
.equ whN+$80 ; black kNight
.equ whP+$80 ; black Pawn

"Queen's Pawn Game"
.equ $80 ;
.equ whP ;
.equ whP ;
.equ $80 ;
; "King's Pawn Game"
.equ whP ;
.equ $00 ;
.equ $00 ;
.equ whP ;

; $36,837,5827,5833,535,530
; 54, 55, 39, 51, 53, 48
.db whQ, whR, whB, whN, whP, whK

PS

7
7

AL

FULL ZX81 CHESS IN 1K - (c) Copyright David Horne 1983

PSC: gives a score to a chess

C
and $7f
1d hl,whPieces
1d b, s05
1d bc,$0006

cp (hl)
ret z

inc hl
djnz PSCI1
cpir

1d a,b
1d a,c
ret

IST
1d hl,newList
inc (hl)
1d a, (hl)
add a, 1l
1d 1,a
1d (hl),c
ret

piece - Q(5), R(4), B(3), N(2), P(1), K(0)

; deleting the colour of the piece
; the character codes of the pieces
; the highest value

; the highest value +1

; 1f we found it
; then back

; pointer to the next character code
; lowering the value

; search

=B=(0 1f there's no match
if there's no match

A =
; Z2=0
A=C

; AddList: adds to the current legal move list another entry on the end.

; the starting address of the list of moves
; lncrease the counter

; read the counter

; calculate the new address

; set pointer

; and store the new item

TestList: tests to see if there are any moves in the move list.

1d hl,newList
dec (hl)

1d a, (hl)

inc a

ret z

add a,l1l
1d 1,a
1d a, (hl)
ret

; starting address of the list of moves
; lower the counter

; read the counter

; 1f the original value 1is

; zero, then back

; otherwise set the pointer
; to the last item
; return with the value of the last item

FULL ZX81 CHESS IN 1K - (c) Copyright David Horne 1983

; PIECE: this sets up pointers to possible move tables and number of steps and

; directions.

PIECE
1d e,1 ; save the current position of the piece
XOor a ; clear the 1list
1d (newlList), a ; of moves

;) 1ld a, (hl) ; clears the colour of the

;7 and S$7f ; piece under consideration

;7 cp whP ; 1s it a "P"awn?

;7 jr z,PAWN ; creating list of moves
1d a, (hl) ; content of the current position
1d d,a ; Store it
call PSC ; 1s a piece? 0O(5),R(4),B(3),N(2),P(1),K(0)
ret nz ; no, return

;7 1d c¢,$01 ; max. number of moves

;o 1d b,Ss08 ; and directions
1d bc, $0801 ; max. nr. of directions and moves

;7 1d hl,akNight ; pointer to the table of moves

;7 cp whN ; 1s it a k"N"ight?

;7 jr z,MOVE ; creating list of moves

;7 1d 1,theKing & 255 ; pointer to the table of moves

;7 cp whK ; the "K"ing?
1d hl, theKing ; pointer to the table of moves
and a ; the "K"ing?
jr z,MOVE ; creating list of moves

;5 1ld c,b ; max. 8 moves / 8 directions

;7 cp whQ ; the "Q"ueen?

;7 jr z,MOVE ; Ccreating list of moves

;o 1d b, s04 ; max. 8 moves / 4 directions

;7 cp whR ; 1s it a "R"ook?

;7 jr z,MOVE ; Ccreating list of moves

;7 1d 1,aBishop & 255 ; pointer to the table of moves

;7 cp whB ; 1s it a "B'"ishop?

;7 ret nz ; 1f not, then return
1d 1,blkPawn & 255 ; pointer to the table of moves
dec a ; 1s it a "P"awn?
jr z, PAWN ; creating list of moves
1d 1,akNight & 255 ; pointer to the table of moves
dec a ; 1s it a k"N"ight?
jr z,MOVE ; creating list of moves
1d bc, $0408 ; max. nr. of directions and moves
1d 1,aBishop & 255 ; pointer to the table of moves
dec a ; 1s it a "B"ishop?
jr z,MOVE ; creating list of moves
1d 1,aRoo0k & 255 ; pointer to the table of moves
dec a ; 1s it a "R"ook?
jr z,MOVE ; creating list of moves
1d b, c ; 8 directions and 8 moves (the "Q"ueen)

9

FULL ZX81 CHESS IN 1K - (c) Copyright David Horne 1983

; MOVE: produces a list of all legal moves available to the piece under
; consideration.

MOVE

MOVE1

MOVE2

MOVE3

1d a,e

add a, (hl)
push af
push hl
push bc

cp BoardH1 & 255

jr c,MOVE2

cp BrdOut & 255

jr nc,MOVEZ
call STR

cp $02
jr nc,MOVE2

push af
call ALIST

pop af

cp $00
and a

jr z,MOVE2

pop bc
pop hl

1d a,c

cp $01

dec a

jr z,MOVE3

pop af
jr MOVE1

pop bc
pop hl

pop af
inc hl

djnz MOVE

ret

the current position of the piece

; new position based on the table of moves

save position
save table of movements' pointer
save max. number of moves and directions

if the address is smaller than the board's
first square, see the next possible move

if the address is bigger than the board's
last square, then see the next possible move

analyse content

if it's not empty (1) or not an opponent (0)
then see the next possible move

otherwise save position property
and add to the list of moves

set back the position property

if it's an opponent, then we can't go in that direction
if it's an opponent, then we can't go in that direction
let's see the next possible move

s max. number of moves and the direction

the pointer of table of moves

if this piece (in this direction)

can only move once (one square)

can only move once (one square)

let's see the next possible direction

otherwise set back the address of the position
then calculate the next move

s max. number of moves and the direction

the pointer of table of moves

set back the address of the position
the next item of the table of moves
if it wasn't the last direction,
then repeat from the beginning

10

PAWN1

PAWN2

PAWN3

PAWN4

FULL ZX81 CHESS IN 1K - (c) Copyright David Horne 1983

produces a list of all possible legal moves including initial double moves.

1d a, (hl)

and $80

1d hl,blkPawn
bit 7,d

jr nz, PAWNL

1d 1,whtPawn & 255

1d 4,803
1d a,e

add a, (hl)
push hl
push af

cp BoardH1 & 255
jr c, PAWN4

cp BrdOut & 255
jr nc, PAWN4

call STR

cp $00
jr z, PAWNS

cp $01
dec a
jr nz, PAWN4

1d a,d

cp $01

dec a

jr nz, PAWN4

call ALIST
1d a,e

cp wPwnMax & 255
jr c, PAWNG

cp bPwnMax & 255
jr nc, PAWNG

pop af
pop hl
dec hl
dec d
jr nz, PAWN2

ret

the pawn's

colour

(black pawn's table of moves)
the pawn's colour

; black?

; no - white pawn's table of moves

can move to 3 different directions

the pawn's position (lower byte)

; new position based on the table of moves

save pointer of the table of moves
save position

if the address is smaller than the board's
first square, then see the next possible move
if the address 1s bigger than the board's
last square, then see the next possible move

analyse content

if it's an opponent,
then add to the 1list of moves

if it's not empty,
if it's not empty,
then see the next direction

if it's not the

last direction (forward)
last direction (forward)
see the next direction

otherwise add to the 1ist of moves
the pawn's position (lower byte)

2nd row? (white pawn's first move)
if yes, then let's see the next move

7th row? (black pawn's first move)
if yes, then let's see the next move

set back the address of the position
the pointer of the table of moves
set to the next direction

check the direction

if it wasn't the last, then again

11

PAWNG

origPos
PMOVE

s

FULL ZX81 CHESS IN 1K - (c) Copyright David Horne 1983

1d a,d

cp $01

dec a

call nz,ALIST

jr PAWN4

pop af
pop hl
1d e, a
jr PAWN3

1d hl, (origPos)
1d hl,BoardHl

1d a, (de)
1d c,a

1d a, (hl)
1d (hl),$00
1ld (de),a
1d b, a

ret

exx

and a

call SHIFT

i1f the direction 1is

;s not the last (forward)
;s not the last (forward)

then add to the 1ist of moves

test the next direction

set back the address of the position
the pointer of the table of moves

s keep the positon's address

test the new position

original position

original position

the content of the new position

to the register "C"

the content of the original position
(deleting temporarily)

to the new position

and to register "B"

save the main register set
CYy=0
save the list of moves

; CHK locates current mover's Kings and stores the position in the attack
; register.

7

CHK

1d a, (MoverCol)
add a,whK

1d hl,BoardH1l
1d b, a

cpir

dec hl

1d (RAttack),hl
1d a,1

dec a

current mover's colour: S$80 (black), S00 (white)

code for the "K"ing

the board's starting address
setting the counter (bc) for search
search

save the result

the result

12

FULL ZX81 CHESS IN 1K - (c) Copyright David Horne 1983

; SQuare ATtack: determines whether the opposition can attack the square in the
; attack register.

7

SQ AT

SQ_AT1

SQ AT2

RAttack

SQ AT3

1d (RAttack), a

1d b,BrdSize & 255

1d hl,BoardH1l-1

inc hl
push hl
push bc
1d e, 1
call STR2

cp $00
jr nz,SQ AT3

ex de,hl
call CHGMV
ex de,hl

1ld 1,e
call PIECE

call CHGMV

call TL
jr z,SQ AT3

1d hl, (RAttack)
cp 1

.equ $+1

cp BoardHl1l & 255
jr nz,SQ AT2

pop bc
pop hl
scf
ret

pop bc
pop hl
djnz SQ AT1

and a
ret

save the result
check upon the number of screenposition (max. 86)
the board's starting address (-1)

the next position

save 1t

save the counter

store the lower byte of the address
analyse the content

opponent?
if not, then next

(save HL)
changing the colour of the mover for the check up
(restore HL)

the lower byte of the address
creating the list of moves

set back the colour of the mover

test the list
i1f empty, see the next position

is the address in the attack register
on the 1ist?

is the address in the attack register
on the 1ist?
if not, see the next component on the 1list

set back the counter

in HL the address of the attacker
CY=1 indicates that there's an attack

set back the counter
the screen position which was checked upon
if the last position is safe as well

CY=0 indicates that there's no attack

13

FULL ZX81 CHESS IN 1K - (c) Copyright David Horne 1983

; INC determines whether a square is being attacked.

7

INC
1d a,1 ; the lower byte of the address
exx ; save the main register set
;7 1d (RAttack) ,a ; Store the address of the board
call sQ AT ; 1s this position under attack?
; (Cy=1, if yes)
exx ; set back the main register set
;7 1d a,c ;
1d a,d ;
ret ;

14

FULL ZX81 CHESS IN 1K -

SCORE provides a move score based on the following:
first, the "To" position results in taking of a piece.
Second, the "From" position is attacked.

Third, the "To" position is attacked.

Fourth, "To" enables the computer to obtain a check
and finally the "From" position is defended.

(c) Copyright David Horne 1983

The current move score is then compared with the previous best and if this is

; superior, the move is saved as the best so far.
SCORE
push hl ; save the original position's address
push bc ; save the content of the positions (original/new)
push de ; save the new position's address
push hl ; save the original position's address
push bc ; save the content of the positions (original/new)
; 1d d,1 ; original position lower byte
;o 1ld hl,oldScore+4 ; 16448 ($4040 in Printer buffer)
;o call $0724 ; ROM:
;; LD (HL),B ; PRBUFF+4 = content of the original position
;;, DEC HL ;
;; LD (HL),C ; PRBUFF+3 = content of the new position
;7; DEC HL ;
;; LD (HL),E ; PRBUFF+2 = address of the new position (lower byte)
;;, DEC HL ;
;; LD (HL),D ; PRBUFF+1 = address of the original position (lower byte)
;7 RET ;
1d h,b ; Store the content of the original position and the
1d (oldScore+3),hl ; address of the original position (lower byte), and
1d (oldScore+l),de ; store the new position's address, as score parameters
call PSC ; get value of the piece: Q(5), R(4), B(3), N(2), P(1)
;7 1ld a,b ; value of the piece: Q(5), R(4), B(3), N(2), P(1)
add a,h ; + S40 (64; whPieces upper byte)
;5 1d c,a ; saved in C
1d d,a ; saved in D
pop af ; A= piece in the original position
call PSC ; value of the piece: 0(5), R(4), B(3), N(2), P(1)
pop hl ; set back the original position
call INC ; 1s this position under attack? (Cy=1, if it 1is)
jr nc, SCORE1 ;
;5 add a,b ; 1f it is, then change the value of the move
add a,c ; 1f it is, then change the value of the move
SCORE1
;7 1ld c,a and save it to a temporary repertory
pop hl ; reading the address of the new position and
pop de the original (D) /new (E) content
;5 1ld e, (hl) content of the new position
1d (hl),d changed to the content of the original position
push hl save the address of the new position
push de save the content of the positions (original/new)

15

FULL ZX81 CHESS IN 1K - (c) Copyright David Horne 1983

1ld d,a ; and save 1t to a temporary repertory
call INC ; 1s the new position under attack? (CY=1, 1if it 1is)
jr nc, SCORE2 ;
;7 sub b ; 1f yes, then set back the previous value of the move
sub ¢ ; 1f yes, then set back the previous value of the move
SCORE2
push af ; save the calculated value of the move
call CHGMV ; changing the colour of the mover
call CHK ; check?
pop bc ; (calculated value to register "B")
jr nc, SCORE3 ;
inc b ; 1f yes, then increase the value of the move
inc b ; by 2
SCORE3
pop de ; reading the original (D) /new(E) content
pop hl ; set back the content of
1d (hl),e ; the new position
pop hl ; change the colour of the
call CHG ; original position
call INC ; 1s this position under attack? (Cy=1, if it 1is)
jr nc, SCORE4 ;
dec b ; 1f it is, then lower the value of the move
SCORE4

call CHG
call CHGMV

1d a,b

1d hl,oldScore
1d (hl),a

ex de,hl

1d de, oldScore
1ld (de),a

1d hl, newScore
cp (hl)

ret c

1d bc,$0005
jr SHIFT1

set back the colour of the position
set back the colour of the mover
save the calculated value of the
move

move

if the previously calculated
value is smaller,

then copy the data of the new position
as a replacement for the old data

16

FULL ZX81 CHESS IN 1K - (c) Copyright David Horne 1983

; Shift moves the current move list to a safe position whilst Check is being
; evaluated, and then recovers the move list on completion. It is also used to
; shift the best move so far up into the move list.

7

SHIFT
1d hl,oldList ; address of the saved 1list
1d de,newList ; address of the 1list of moves
1d bc,$001c ; max. 28 bytes
jr c,SHIFT2 ; 1f CY=1, then set back
SHIFTL
ex de,hl ; 1f CY=0, then save
SHIFT2
1dir ; moving the data
ret ;

17

FULL ZX81 CHESS IN 1K - (c) Copyright David Horne 1983

; MPSCAN: scans the board for computer pieces and, using move and score,
; determines all legal moves and saves the best.

7

MPSCAN

MPSCAN1

MPSCANZ2

XOor a
1ld (newScore), a

1d b,BrdSize & 255

1d hl,BoardHl1l-1

inc hl
push hl
push bc
1d e, 1
call STR2

cp $03
jr nz,MPSCANS

1d 1,e
1d (origPos),hl
call PIECE

call TL
jr z,MPSCANS5

1d e,a
1d d,BoardH1/256
call PMOVE

exx
and a

call SHIFT
call CHK

; /MPSCAN3

exx

1d (hl),b

1d a,c

1d (de),a

jr c,MPSCAN4
call SCORE
call nc, SCORE

; s MPSCAN4

MPSCANS

scf
call SHIFT
jr MPSCAN2

pop bc
pop hl
djnz MPSCAN1

1d a, (newScore)
cp $00
and a

initialise (to zero) the
calculated value of the move

we look through max. 86 positions
starting with the board's first component

; pointer to the next position on the board

save the position on the board
save the counter

; position to a temporary storage

analyse content

is it our own piece?
if not, then check the next position

set back the position on the board
and save it

creating list of moves

a component of the 1ist
if empty, then check the next position

a possible new position for the piece

; move the piece

save the main register set
CYy=0
save the 1ist of moves

check? (is the king under attack?)

set back the main register set

set back the content of the original position

and
the content of the new position

if the king is under attack, then delete move

otherwise choose the best possible move
choose the best possible move

Cy=1
set back of the list of moves
the next component of the list of moves

the current value of the counter and
the position on the board

; next position

this was the last position
checking the result
checking the result

18

FULL ZX81 CHESS IN 1K - (c) Copyright David Horne 1983

#ifdef ZX80upg

jp z,GameOver

f#else
MPSCANG
jr z,MPSCANG
#endif
;5 1ld hl,newScore+4
;5 1ld a, (hl)
;7 dec hl
;7 dec hl
;7 1d e, (hl)
;o 1d d,Board/256 ;
;7 1d (de) ,a
;7 dec hl
;7 1d 1, (hl)
;o 1d h,d
1d de, (newScore+3)
1d hl, (newScore+1)
1d (hl),d
1d 1,e
CHGSQ
bit 0,1

#ifdef ZX80upg

1d (hl),$80
#else
1d (hl),$00
#endif
; jr z,CHGSQ1
;7 1d (hl),500
call nz,CHG
; ;CHGSQ1
;7 call CHGMV
;7 ret
CHGMV
1d hl,MoverCol
CHG
1d a, (hl)
add a, $80
1d (hl),a
ret

if the value of the move is zero, then the game ends

if the value of the move is zero, then the game ends

otherwise
read the original content

the address of the new position
original content to the new position (move)

the address of the
original position

original content (D) / position (E)

the address of the new position

original content to the new position (move)
the address of the original position

the even-numbered

squares are black
squares are white
the odd ones are
white

the odd ones are inverse

——————————— (two unnecessary rows)

changing the colour of the mover

changing the
colour of a piece
or position

19

FULL ZX81 CHESS IN 1K - (c) Copyright David Horne 1983

; DRIVER:

; Main control logic,

7

DRIVER4

DRIVER

s

DRIVERI1

s

DRIVER2

1d (hl),b
1d a,c
1d (de),a

uses all the other subroutines to provide program control.

; move the piece to the original position
; set back the original value
; of the new position

% ok % ok ok ok ok ok b ok ok b Sk ok ok Sk ok ok o ok ok S ok ok S ok ok Sk ok ok b ok ok Sk ok ok ok ok ok ok ok ok Sk S ok ok S ok ok S ok ok S ok ok S ok

MAIN PROGRAM ENTRY (RAND USR X)

1d b,$05

1d a,$08

1d hl,INPUT-1
1d bc, $0416
1d hl, INPUT+4

inc hl

1d (hl),a

1d (hl),c
dec hl

djnz DRIVERL

call KYBD

cp $03
jr nz,DRIVER

1d (origPos),hl
1ld e, 1

call PIECE

1d hl,INPUT+I
1d hl, INPUT+3
call KYBD

cp $02

ex de,hl

jr nc, DRIVER

call TL
jr z,DRIVER

cp ¢
jr nz,DRIVER2

call PMOVE
exx

call CHK
exx

jr c,DRIVER4

call CHGSQ

call MPSCAN

; /DRIVERS3

jr DRIVER

; the INPUT line consists of 5

; "chessboard" character

; Starting address (-1)

; the INPUT line consists of 4 "-" character
; end of the INPUT LINE

; fill the INPUT line
;, fill the INPUT line

; get and check the "from'" position

; 1s 1t our own piece?
; 1f not, then from the beginning

; save the "from" position

; lower byte to E
; creating the list of moves

; get and check the target position
; 1f not empty, or
; not one of the pieces of the opponent,

; then from the beginning

; testing the list
; 1f empty, then from the beginning

; 1s 1t on the 1ist?
; 1f not, see the next item of the list

; move piece to the new position

; save the main register set

; check?

; set back the main register set

; cancel the move, 1f the king is under attack

; setting of the colours of the old position and
; changing the colour of the mover

; ZEDDY moves

; USER moves

20

FULL ZX81 CHESS IN 1K - (c) Copyright David Horne 1983

; /DRIVER4
;7 1d (hl),b ; move the piece to the original position
;7 1d a,c ; set back the original value of the new position
;7 ld (de),a ;
;/ jr DRIVER3 ; get the new move
.db $76 ; line 1 end (halt)
; LINE 2 SLOW - eliminated, using CDFLAG=S$40
Line2
;7 .db $00,502 ; line number
;7 .dw Line3-L2Text ; line length
;s L2Text
;7 .db SE4 ; SLOW
;5 .db S§76 ; line 2 end (halt)

; LINE 3 RAND USR X

Line3

.db $00,3503 ; line number

.dw DFile-L3Text ; line length
L3Text

.db $F9, $D4, $3D ; RAND USR X

.db $76 ; line 3 end (halt)

21

FULL ZX81 CHESS IN 1K -

7

(c) Copyright David Horne 1983

7

; D-FILE ($4332)

7

DFile

.db $76,876,$876,576,376,876
.db $76,876,$76,576,876,876

; sMoverCol
;7 .db $80,508
.db $A9,$B7,S$AD,$76,3576

;sBoard .equ S$+1
CountAl .equ $+9-11+$26
BoardHl1l .equ $+2

.db $1D,$08, whR, whN, whB, whK, whQ, whB, whN, whR, $76,
.db $1E,$08,whP,whP,whP,KP1,QP1l,whP,whP,whP, $76,

wPwnMax .equ $-1

.db $1F, $08,$00,$80,500,KP2,QP2,$80,$00,580,876,
.db $20,$08,$80,$00,580,500,580,500,$80,500,576,
.db $21,808,500,$80,500,$80,500,5$80,500,$80,$76,
.db $22,$08,5$80,$00,$80,$00,580,500,$80,500,576,

bPwnMax .equ $-1

.db $23,$08,blP,blP,blP,blP,blP,blP,blP,blP, $76,
.db $24,$08,b1R,b1N,blB,blK,blQ,blB,blN,DblR, $76,

BrdSize .equ $-BoardHl
BrdOut .equ $-1

.db $08,$08,52D,$2C, $2B, $2A,$29,$28,$27,$26,$76,

.db $76
INPUT
.db $16,516,$16,516,516,$76
;7 .db $76,576,576,576,576,976,576,576,576

7

7

; VARIABLES

7

dbl1DRV .equ (2*DRIVER) & STFFF
Variables

.db $7D, $8F

.db dblDRV/256

.db dblDRV&255

.db $00,500

.db $80
eof Vars
.end

7

7

($7D, $8F,504,57E,500,500)

X=DRIVER

22

rows 1-5
rows 6-11

row

row
row

row
row
row
row

row
row

row
row

row

12-13

14
15

16
17
18
19

20
21

22
23

24

