Introducing the ZX Compiler

v

Instructions on loading.

Place the cassette on side A, into the recorder. Follow loading
instructions, as found in chapter 16 of the ZX81 manual. If at
first the program does not load, try different tone and volume
levels. If after this it still does not load, try a different tape
recorder. There are two copies of ZX COMPILER on the tape.
(Use file name’* COMPILER"’).

About the ZX COMPILER

The ZX COMPILER is a program, written in basic and machine
code that will change a program in ‘BASIC’ into machine code.
This can be used to create programs or sub routines that can run
up to twenty or thirty times faster than normal BASIC! Because
the ZX81 only has a capacity of 16K ram the compiler works in an
integer-only, sub-set of BASIC. To save even more space commands
have been left out that are not needed, for example REM:- which
is not needed in compiled programs any way and INPUT:- which
can be made by a routine using gets and if.....then statements.
...Once your program to be compiled is written, you run the
compiler. After a period of fast mode, the program ‘NEWS' itself
and leaves you with a single rem statement containing the machine
code (it looks like random junk).

Once written you may either call the code from within a program
or directly from the keyboard using LET X = USR 16595. :

INSTRUCTIONS ON USE :
The program to be compiled is written in ‘REM’ statements before
line 1000 beyond line 1000 is the compiler. The reason for REM's
is so you can have extra commands that can’t be keyed-in, in .
normal BASIC. This does mean though that you will have to key
in whole commands for example PRINT is P-R-1-N-T. eg:

1 REM PRINT “HELLO"

In the program there are to be no spaces, except in print
statements. Also goto statements must be followed by a ‘true’ line
for example the following will not work.

1 REM PRINT “HELLO"”

2 REM GOTO28

When you type run and newline, the screen will blank for a few
seconds and then print up:

ERROR IN LINE 28

Which means it can’t find any line 28

The compiler program may only have variables A-Z, no strings or
arrays. (These may be implimented using other commands such as
peek and poke).

-variables in the compiler are not the same ZX81 variables.

’

Numbers may be 0-65535. To get a negative number use 65535-x
eg: -2=65536-2

There may seem a lot you can’t do but it is enough to write most
programs, (such as space invaders, breakout, etc.) The only way to
really find out what the compiler can do is use it, read through the
examples and work them out.

COMPILER COMMANDS

In this section | will go through all the commands available on the
compiler.

In this section (variable) can mean a number of things:

1) A number 0-65535

2) A letter A-Z

3) RND followed by a variable

4) USR followed by a variable

5) TOP

6) DEEK followed by a variable

7) PEEK followed by a variable

eg: RNDA RND200 RNDUSRDEEK16514!!

Top and Deek need explaining, the others should be clear enough.
Top will return the first position on the display that can be poked.
It’s basic equivalant is : PEEK 16396 + 256 * PEEK 16397 + 1
Deek is the opposite of doke and peeks two locations at the same
time. (To return a number 0-65535) Top is the equivalant of DEEK
16396 + 1. The nascom and other computers use these commands.
eg: It can be used for poking a lazer base with one command.

1 REM DOKE TOP 1153

PRINT

This can either be followed by text enclosed in speech marks or a
variable, (A-Z) it will print the chrs of the variable. The semi colon
at the end of the print is automatic. To print at the start of a new
line use the following:

1 REM PRINT 118

(Which is the same as the BASIC PRINT CHRS 118.) So print can
be used in two forms which are:

1. PRINT,--TEXT--"

2. PRINT (VARIABLE)

GET

This is the same as the BASIC INKEY, except only it returns the
code (0-128) of the key pressed. |t may only be used in one form,
if no key is pressed it returns 128.

1. GET (VARIABLE)

eg: 1 REM GET A 2 REM PRINT A 3 REM GOTO 1

END

This is the same as the BASIC STOP, eg:

1. END

It is important that you end a compiler program with either an
END if you want execution to stop, or RETURN (see later) if you
want to continue the calling BASIC program.

PAUSE

This may only be used in one form:

1. PAUSE (VARIABLE)

It is a delay, the length of which is determined by the
(VARIABLE). The longest delay possible would be 65535, it lasts
for 2 seconds!!

GES

This is the same as BASIC CLS except it clears all 24 lines of the
display, not just 22. It has only one form:

€15

MOVE

This is the same as the BASIC PRINT AT, except you may “PRINT
AT" all 24 lines down. It takes only one form:

1. MOVE (VARIABLE),(VARIABLE)

eg: 1 REM MOVE 23,10 2 REM PRINT “HELLO"” 3 REM END

LETE

This is like the BASIC LET statement except you may not have
long equations or brackets. It may take only two forms:

1. LET (VARIABLE) = (VARIABLE)

2. LET (VARIABLE) = (VARIABLE) (OPERATOR) (VARIABLE)
(OPERATOR) can be either +,-,* or /

SCROLL

This is the same as the BASIC SCROLL except that it is a lot
quicker-and.scrolls all 24 lines.of the screen.

GOTO

This is like the BASIC goto except the line number must exist. It
may only take one form:

1. GOTO NUMBER (1-999)

GOSuB :

This is the same as BASIC GOSUB, except for detination line
number which must exist. It can only take one form:

1. GOSUB NUMBER (1-999)

RETURN

Used in conjunction with GOSUB, this is identical to its BASIC
equivalant. Used when not in a GOSUB sub-routine, it will return
you to BASIC and continue with the calling program. It may only
take one form:

1. RETURN

PLOT

This is the same as BASIC PLOT! It may take only one form:

1. PLOT (VARIABLE),(VARIABLE)

UNPLOT

This is the same as BASIC UNPLOT. It may only take one form:
1. UNPLOT (VARIABLE),(VARIABLE)

POKE

This is the same as its BASIC equivalant. It may only take one
form:

1. POKE (VARIABLE),(VARIABLE)

DOKE

Is used on the nascom and other computers, it pokes two locations
at the same time with a number of up to 65535. The low byte of
the number at the address and the high byte at address +1. For
more information see example programs. It can only take one
form:

1. DOKE (VARIABLE),(VARIABLE).

IF is used in only one way:

1. IF (VARIABLE) (SIGN) (VARIABLE)......ccu.....

(SIGN) can mean either =,<>,<>. There is no need to use the then
statement. For more information see example programs.

eg: IFA>2 GOTO 19

SCROLL

These are all the commands allowed in the compiler. But as you
can see from the example programs, these are enough.

EXAMPLE 1

This program will invert the screen, then Return to basic not stop.
It will invert all 24 lines of the display.

1 REM LETB=24

2 REM LETA=TOP

3 REM IFPEEKA=118G0OT0O10

4 REM LETZ=PEEKA+128 : NUMBER OF LINES

5 REM POKEA,Z : TOP OF SCREEN
6 REM LETA=A+1 : END OF LINE ?

il RGO TO3 TINVERTIT
10 REM LETB=B-1
11 REM IFB=ORETURN —"RETURN’ TO BASIC, USE END
12 REM GOTO6 STOP WITH AN ERROR CODE!
Try this program out, then try it in BASIC to see how slow it is.
EXAMPLE 2.

This program demonstrates the DEEK and DOKE commands,
DOKE is used to ‘save’ the variable while it is used for something
else, DEEK reads it back again.

1 REM LETA=45192

2 REM DOKE30000,A

3 REM LETA=0

4 REM LETA=DEEK30000

5 REM IFA<>45192PRINT”THIS WILL NEVER BE PRINTED""
6 REM END

In this program location 30000 was chosen because it is high up in
the memory and will not interfere with anything.

WHEN YOU HAVE WRITTEN A PROGRAM.

When you have written your program in REM statements, SAVE a
copy on cassette (in case you have to de-bug it) Then RUN, this
will run the compiler as it will go past REMS. After a delay
(10mins for 4K program) the screen will return. If it says error,
correct error and re-run it. |f it comes up with one rem followed
by junk then it has finished compiling, BEFORE YOU DO
ANYTHING ELSE type in: 2 RAND USR 16595

Then SAVE another copy of the program and run it. If the
program does something odd, try and see what is happening,
re-load the first copy and correct the program.

MORE FACTS

Don't forget in machine code there is no ‘break’ key to test for
one use.

1. REM GETA

2. REM IFA= ¢ END

Even a one line compiler program when compiled may seem to
take up a lot of room, this is quite normal because about 1K is
taken up with variables and routines. The compiler was really
developed for small fast routines to be used in a BASIC program
or entire games in machine code.

If you want to interchange basic variables and compiler variables,
the compiler variables are held at 16514 low byte first,high byte
next. A(low) is at 16514, B(low) is at16515 and so on.

In the program you will see two sets of inverse AJGs this is so the
author can identify any compiled program. (No program may be
used personal gain which in any way conected with the compiler
without the permission of the author.

Try to use POKE and PEEK, (deeks and dokes) more as they are
very fast in the compiler. Things like PRINT. PRINT AT, PLOT,
UNPLOT use basic routines to space so they will only be executed
at about twice the speed as normal.

The RND function is not very random when displaying the results,
but it is good enough for normal random decisions. (This is again
due to the lack of space available). Compilers available for other
computers may need 4K of code for one line of compiled
program!!

MORE EXAMPLES

1) Add all the numbers 1-1000 together.
(returns the answer in s 165114+16515)
1 REM LETA=0

2 REM LETC=0

3 REM LETA=A+C

4 REM LETC=C+1

5 REM IFC 101GOTO3

6 REM END

Type this in, then RUN it, to see the answer
PRINT PEEK 16514+256*PEEK 16515
Try out the program in BASIC as well and see the diffrence in speed

2)

1 REM LETP=0

2 REM MOVE23,P

3 REM PRINT34

4 REM GET A

5 REM IFA=33LETP=P-1
6 REM IFA=36LETP=P+1

7 REM IFP=65535LETP=0)

8 REM IFP=31LETP=3¢
9 REM SCROLL
10 REM GOTO2

key 5
key 8

