
MCODER is the first true compiler for use with the ZX81.

It has been carefully written to occupy as litte space as possible
(just under 4K) in order to leave maximum space for your
programs.

Although MCODER is a very sophisticated and versatile tool, do
not expect miracles, you will have to become familar with its
method of operation if you are to use it to its best advantage.

How do I load MCODER?

MCODER must always be present in the ZX81 before you try
and enter any code. It is loaded from tape using LOAD" ".
MCODER contains its own self checking routine to ensure that it
loads correctly, if for any reason the program corrupts, an error
message will be displayed on screen and you should reload.

Once loaded you must remember that MCODER uses line
numbers 1-3 inclusive and cannot be deleted.

How do I use MCODER?
Using MCODER is really a very simple operation. First of all,
enter the BASIC program you wish to compile. It is essential to
run and check the program thoroughly before it is compiled and
there is no break facility in the compiled code. Before writing a
program it is strongly advised that you carefully read through
the list of commands which MCODER will compile and ensure
that your BASIC program consists only of these commands.

Once you are satisfied with the BASIC program you can
compile by using the command LET L = USR 17300. The
BASIC statements will then scroll up the screen as they are
compiled.

If MCODER finds a command or statement it cannot compile
then it will return to BASIC with an inverse S at or near the
offending command.

Possible errors include:
1. Using illegal variable names.
2. GOTO 'variable' or GOSUB 'variable' which are not allowed
3. Illegal statement such as SAVE or DIM A$(10)

If an error is reported then you should correct it and recompile.

At the end of a successful compilation you will be shown 3
pieces of information :

I.) the location of the end MCODER code,
II.) the command necessary to run your compiled code,
III.) a query as to whether Yw wish to run the compiled code
immediately (RUN? - reply Y or N to this prompt).

Can I compile basic programs I already have on tape?
YES- simply load MCODER first and then load the program you
wish to compile. Using LET L = USR 32462 after loading your
own program will automatically push MCODER into position.
You can now continue as shown above.

It is important to stress that you will probably have to make
considerable changes in your BASIC program as it is unlikely to
have been written to suit MCODER.

Which Commands will MCODER compile?
Note: the variable names may contain only A-Z and 0-9.
Arithmetic is restricted to the four standard operations + - * /.

AND Boolean AND. Allowed only in an IF
statement

ABS As BASIC.
CHR$ As BASIC.
CLS As BASIC.
CLEAR As BASIC.
CODE As BASIC.
COPY As BASIC.
DIM A(V) Only one dimensional arrays are

availabe in MCODER and there must be
at least 2*V bytes spare space at run-
time. No runtime array bound checking
is done so make sure it works under
normal BASIC. If you redefine an array
a new version of it is made but the old
one is not deleted. This means that
repeated allocation can eventually fill
the machine and give an error 4 (out of
memory) either when allocating an array
or a string. Array and string space
stretches from STKEND to 256 bytes
below RAMTOP. All arrays, strings and
variables are erased when you reenter
an MCODER program and all the space
is available again. There are no string
arrays.

FAST As BASIC except that MCODER does
not return to SLOW mode when the
screen is full during INPUT or during
PAUSE

FOR X = V TO U - X increments in steps of 1 from V to U.
NEXT X Ends the loop. Note that (U-V)
must be less than 32767.

GOSUB N Calls line N as a subroutine. If line N
does not exist then it goes to the next
line after N. Note: that N must be a
positive integer constant.

GOTO N Jumps unconditionally to line N
.Otherwise as for GOSUB.

IF V op U THEN where op is any of AND, OR, <>, =, =<,
>= or >,<. Note that V and U must not
differ by more than 32767 For string
operations AND and OR are not
applicable.

INKEY$ As BASIC.
INPUT A or A$ For numbers a leading negative sign is

allowed. For strings the maximum length
is 31 characters.
No graphics mode.

INT Included to facilitate test under BASIC.
LEN A$ As BASIC exept that A$ cannot be sliced.
LET As BASIC.
LPRINT As BASIC.
NEW As BASIC.
NEXT See FOR - NEXT
OR Boolean OR only available in IF

statements
PAUSE V Causes the program to wait for V/50 secs

if in SLOW mode. It does not go from
FAST to SLOW mode as in Sinclair
Basic. There is no flicker as PAUSE
starts and finishes. V must be positive
and less than 32768. Pressing
SHIFT+EDIT returns to BASIC, any other
key causes the next statement to be
executed.

PEEK As BASIC.
PLOT As BASIC.
POKE As BASIC.
PRINT As BASIC.
RAND As BASIC.
REM Ignored as usual except that "REM?"

looks to see if the SHIFT+EDIT keys are
pressed and if so returns to BASIC with

 an error D. This is useful to escape

 from infinite loops.

RETURN Returns from a subroutine started by a
GOSUB. Make sure that your GOSUBS
and RETURNS match as no check is
made.

RND Returns a random integer between 0 and
32767. (NOT the same as BASIC).
To obtain the same effect under BASIC
use USR 16550.

SCROLL As BASIC.
SGN As BASIC.
SLOW As BASIC.
SQR Interger square root
STOP If MCODER finds a STOP statement

compilation ceases there. If you wish there
to be a STOP in the middle of your
program then the command LET L=USR
3292 will give an error 9 and stop.

Strings By default strings hide a maximum length
of 32 characters. If you exceed the
maximum string length then you will write
into whatever follows (either another string
or an array). However we "Further
Features". String slicing may not take the
form A$(TO M) or A$(M TO). There are
no string arrays.

UNPLOT As BASIC.
USR As BASIC.

Improved Scrolling of output.
Under Sinclair BASIC when the output reaches the bottom of the
screen an error 5 is reported. Under MCODER when the output
reaches this point an inverse ? is shown at the bottom left of the
screen. Pressing CONT causes a CLS and the program
continues (holding your finger on CONT causes this process to
be repeated indefinitely). Pressing SHIFT+EDIT stops the
program,

key D (SLOW) causes the screen to scroll at a maximum of 1
line per second, pressing Z (COPY) causes a hard copy to be
produced on the ZX printer. Any other key than these causes
the screen to scroll upwards while the key is depressed and will
stop if no key is pressed. The choice may be varied each time
that ? is displayed.

POINTS TO REMEMBER
When running a compiled program, MCODER must always be
present as it contains the run time system and arithmetic
routines.

You must not use SINCLAIR's scroll command if you intend to
mix BASIC and compiled code as this destroys the regularity of
the display file which MCODER needs.

Further features of MCODER
You may choose where to put the code generated by MCODER
if you enter by RAND USR 17287. MCODER will prompt
"CODE" to which you should reply with the positive integer
number address to which the code should be compiled.
To find out how long the code will be compile to 0.
There are several other useful locations. In you program POKE
16417, N causes the screen to scroll without asking "?" N times.
At the end of this time location 16417 will again contain zero.

Locations (16507 and 16508) contain the present default string
length (usually 32) which may be POKEd in your program to
change the default. This value is reset as your program starts.
Locations (16536 and 16537) are used to prevent lines at the
top of the screen from scrolling. The value should be n*33 where
n is the number of lines to be left alone.

Location 15535 is the location which causes the compiler to
auto scroll during compilation. If this is poked with zero then the
compiler will wait as described in the section on scrolling above.
Pressing D causes the generated code to be displayed.

You may with to have werel sections of compiled code.
This is achieved by the following procedure:

1. Compile the first section. The entry point will be
given (X). Now POKE X-6,1 to convert line 2 into
line 1.

2. Compile section 2. A new entry point will be given
(Y) RAND USR X still works to access the first
action and RAND USR Y accesses the second.
This may be repeated as often as space allows.
(NOTE to users with machines greater than 16k.
On no account must you allow any section of code
generated by MCODER to cross the 32k word
boundary).

3. If you wish to have your own machine code put it
in a REM at line 1. The first byte available will be
at location 20498. Your compiled code will not now
start at 20500 but you will be given the correct
entry address.

The BASIC code may be quickly deleted by using RAND USR
17281.

As an example of MCODERS speed.

Enter the following short program and compile It.

100 FOR A=1 TO 50
200 FOR B=1 TO 30
300 PLOT A,B
400 NEXT B
500 NEXT A
600 STOP

 Once it has compiled compare the running speed of the
compiled code with that of the BASIC and you will see the kind
of improvement MCODER brings.

MCODER II Copyright 1983 D.C. Thretfall

MCODER II

ZX81
© P.S.S. 1983

452, Stoney Stanton Road,

Coventry

CV6 5DG.

Telephone: (0203) 667556

